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Abstract.  With the aim of developing simulated multicellular organisms that
develop, reproduce, and evolve, a simple, general, and mechanically realistic
model of a biological cell is needed. The cellular Potts model (CPM) has been
used to simulate cells of arbitrary shape, and the mechanical interactions be-
tween them, and has been shown to capture the fluid dynamic properties of liv-
ing tissues. However, the CPM was designed to study adhesive cells moving
passively within aggregates. To be useful in an open-ended simulation of sim-
ple organisms and embryos, the CPM must be generalized to handle cells of
low or no adhesion, isolated cells, and directed, actively moving cells. The
original CPM contains built-in assumptions that cause it to behave incorrectly
under these conditions. Extensions to the CPM are here presented that over-
come these limitations, moving toward a generic model.

1  Introduction

Studies of the evolution of embryonic development in living organisms will be aided
by models of simple multicellular organisms that develop, reproduce, and evolve in
silico. It is important that such models incorporate the material properties of living
cells, because these are critical to understanding development and evolution. Embryo
development involves cell movement, cell shape change, and tissue formation and
remodeling [7, 14] – mechanical processes that must be represented in order to cap-
ture embryo dynamics. Models that represent cells as simple circles or even as dimen-
sionless points, or that allow arbitrary cell movement and shape change with no con-
sideration of forces [2, 3, 13], are too simple to reproduce these dynamics. This me-
chanical aspect of life determines much of the selection pressures to which organisms
must adapt (e.g., in locomotion, food gathering, avoiding or resisting predation, or
mating), and these mechanical problems have evoked mechanical solutions (e.g.,
cytoskeletons in eukaryotes; musculoskeletal systems in animals; rigid cell walls and
the specialized structures of leaves and flowers in plants). Thus mechanics is central
to understanding the evolution of morphology as well as of development.

Other simulation approaches have incorporated detailed models of the mechanical
properties of cells and the forces within and between cells [1, 5, 10, 14]. Such models
can describe cells quite realistically but are often computation-intensive, and are gen-



erally specific to a single tissue and species, and therefore are not general or open-
ended enough to describe a whole organism or its evolution. A fast and relatively
simple, yet general and mechanically realistic cell model is needed, sufficient to sup-
port model unicellular and simple multicellular organisms.

This paper presents a cellular-automaton-like artificial chemistry, in which two or-
ders of structure are built in from the beginning: second-order structures (biological
cells) with their own cell-level properties, and the first-order elements of which they
are constructed. The subcomponent “molecules” are not meant to represent simple
molecular species, such as lipids or proteins, but larger, supramolecular regions of the
cell. The goal is to construct model cells with realistic mechanical behavior, from
which realistic cell-cell interactions (third order structure) can emerge.

The model is adapted from the cellular Potts model (CPM) of Glazier and col-
leagues [5, 9], a model of cell behavior in adhesive aggregates. The CPM, compared
to other models in theoretical biology, captures a lot of behavioral realism with rela-
tively simple math, making it both computationally efficient, and (an advantage to the
present author) more accessible to a non-physicist. CPM cells have arbitrary and
dynamically changing shapes, controlled by forces resulting from the cells’ own me-
chanical properties. In section 2, I describe my implementation of the CPM. Like
other models in theoretical biology, the CPM has built-in assumptions that limit its
generality. In section 3, I describe certain problems that arise from these assumptions,
and extensions to the model that address these problems, making the model more
general and open-ended. In section 4, I discuss prospects for future enhancement.

2  Basic Implementation of Glazier's Cellular Potts Model

The CPM universe is an array in which collections of adjacent array elements repre-
sent biological cells (Fig. 1(a)). The present implementation uses a 2D hexagonal
array. Each array element contains an integer, the cell index. Each cell i consists of all
those elements with cell index i, and can be of arbitrary size and shape. The sur-
rounding fluid environment is treated as a special cell, cell 0, with special properties.

In each iteration of the simulation, a “Potts move” may occur. An array element,
and one of its nearest or second-nearest neighbors, are chosen at random. If they be-
long to different cells (their cell indices are unequal), the content of the second array
element is copied into the first, changing the cell membership of that element. Thus
cells change shape by stepwise gain and loss of array elements (Fig. 1(b)-(c)). But the
move is accepted only if the cells (other than cell 0) remain simply connected, and
only if an energy-minimization criterion is satisfied, as described below.

The energy of the move has three components:

ΔH = ΔHadhesion + λ1ΔHvolume + λ2ΔHsurface area . (1)

ΔHadhesion measures the energy of changing adhesive contacts. Each cell i has a cell-
specific adhesive strength ji ≥ 0. Adjacent array elements in cells a and b adhere along
their common edge with an adhesive energy J = –(jajb)1/2. (J = 0 for elements within a
single cell.) Hadhesion for a given array element is the sum of all J for all 6 edges of that
element. ΔHadhesion is the change in adhesive energy caused by the Potts move. Thus



increased contact between sticky cells produces a negative ΔHadhesion and is favored.
Cell 0 has j0 = 0, so cells do not “stick” to the surrounding fluid.

The other terms in ΔH allow cells to maintain their volume and surface area (area
and perimeter in this 2D implementation) over time even though each single Potts
move changes those values. In living cells, volume is static because water is incom-
pressible, and surface area is constrained because membrane is in finite supply, and
under tension. Each cell i has a constant target volume Vi and an actual volume at
time t, vi(t). For cell i, Hvolume(t) = (vi(t) – Vi)2. The change in this value is therefore
negative (favorable) when the volume approaches Vi, and positive otherwise. The
total ΔHvolume is the net change for the two cells whose volumes are modified by the
move. (Cell 0 is unconstrained: there is no V0, and Hvolume(t) = 0.) The surface area
constraint works exactly the same way, with a target surface area Si. Thus volume and
surface area remain close to their target values, endowing cells with a spring-like
resistance to stretch and compression. The constants λ1 and λ 2 control the relative
weights of these constraints, and therefore represent the inelasticity of the cells.

Fig. 1.  (a) A section of the array containing two cells surrounded by the fluid environment. (b)
Two adjacent array elements have been selected for a Potts move. Thick arrow indicates the
direction of the copy. (c) The new configuration that results if the move is accepted.

The Metropolis algorithm is used to prevent the configuration of cells from getting
“stuck” in local energy minima [5, 9]: any Potts move with ΔH ≤ 0 is automatically
accepted, whereas any move with ΔH > 0 is accepted with a probability

p = e(–ΔH/T) . (2)

Thus if a Potts move is highly unfavorable (ΔH positive and large), then p approaches
0, and the move will be rejected; but if it is only slightly unfavorable (ΔH positive and
small), then 0 < p < 1, and the move may be accepted. Cells can thus explore their
neighborhood to find globally favored configurations. The constant T, the simulation
“temperature”, controls how easy it is for unfavorable moves to be accepted.

At the level of the individual array elements and Potts moves, the CPM is by no
means an explicit model of the components of living cells and their actual mechanical
interactions; Potts moves do not represent real events. Rather, they represent a com-



putational shorthand designed to capture the cumulative effects of real forces in many
cells over many iterations, producing realistic behavior at the level of the whole cell
or tissue. The goal of the CPM, and of the enhancements presented here, is not to test
what we know about subcellular structures or events, but to create a phenomenologi-
cal model with reasonably correct cell-level behavior, which can then be used to study
cell-cell and cell-environment interactions.

Simulated cell aggregates (Fig. 2) follow the predictions of Steinberg's hypothesis
that differentially adhesive cells, undergoing changing contacts due to random mo-
tion, will rearrange passively [4, 5, 12]. Glazier and colleagues have shown that the
model performs in accordance with the fluid-dynamic properties of living tissues [9].

Fig. 2. Basic CPM demonstrating sorting of differentially adhesive cells. Aggregate is initial-
ized at t = 0 as an array of rectangular cells, each composed of 8 rows of 8 hexagons. (Individ-
ual hexagons are too small to see at this magnification.) Cells have j = 50 (gray) or j = 10
(black). Time is in Monte Carlo steps, where one Monte Carlo step is as many iterations of the
algorithm as there are total array elements in the simulation. Adhesion creates surface tension
that causes the aggregate to round up, and to sort, with the less adhesive black cells engulfing
the more adhesive gray cells. Note the variable shapes assumed by the cells. Other parameters
(for this and all subsequent figures): Vi = 64 and Si = 55 for all cells; λ1 = 4; λ2 = 1; T = 10.

3  Problems and Extensions

3.1  Preventing “Suction”

The CPM was designed to study adhesive cell aggregates [5], but a general purpose
model must accommodate isolated cells, and cells with low or no adhesion. Non-
adhesive cells in an aggregate should disperse, because no force holds them together,
and the compression resistance of neighbors should bias them to move toward open
space, in a diffusion-like process. But the experiment (setting all ji to 0) revealed a
previously undocumented anomaly: dispersal is retarded or prevented. The strength of
the effect increases with cell size. Cells with Vi = 16 disperse gradually. With Vi = 25,
they disperse more slowly, maintaining a clumped aggregate with a loosely packed
boundary, from which individual cells occasionally escape. With Vi = 64 (Fig. 3(a)),
no cells escape except transiently, and the aggregate boundary is more tightly packed,
suggesting surface tension (which should be absent when all adhesion is 0 [4, 5].)

This effect occurs because each Potts move alters the boundaries of two neighbor-
ing cells, thereby coupling their movement. By the very nature of the transformation,
two cells cannot separate, except by “unzipping” from the edge of their mutual con-
tact area. Thus a kind of suction is present, proportional to the contact area between



the two cells. It is always present, but only noticeable when adhesion is low.
The following “suction-release” algorithm eliminated this effect. After two neigh-

boring array elements have been selected for a Potts move, an electronic coin flip
decides which cell is driving the motion – the growing cell or the shrinking cell. If the
growing cell is driving the motion, then the algorithm proceeds as usual (because a
cell extending a protrusion must push other cells out of the way). But if the shrinking
cell is driving the motion, then it should be possible for a gap to open between the two
surfaces and fill with the surrounding fluid (because a cell retracting its edge will be
followed by another cell only if adhesion pulls the other cell, or if the other cell is
under compression and naturally expands into the gap). Therefore the immediate
surroundings (the 12 nearest and next-nearest neighbors) are searched for the presence
of the environment (cell 0), and if any is found then an alternative Potts move is
evaluated, in which the array element vacated by the shrinking cell becomes part of
cell 0 instead of part of the original neighbor cell. ΔH for both the original and the
alternative move are calculated, and whichever move has the lower ΔH is accepted or
rejected as described previously. (When no surrounding fluid is present nearby, it is
appropriate for suction to hold the cells together.) The result is shown in Fig. 3(b).

Fig. 3. Cell aggregates initialized as rectangular arrays as in Fig. 2, except ji = 0 for all cells. (a)
In the original CPM, aggregate is still intact at t = 10,000 despite complete absence of adhesion.
(b) In the CPM with suction-release algorithm, running under identical parameters, cells at t =
10,000 have dispersed.

3.2  Cell Translocation: Respecting Newton's Third Law

The CPM was designed to model passive rearrangements of cells due to differential
adhesion, but a general purpose model must also be able to handle active cell move-
ment, an important component of morphogenesis. In the CPM, the path of cell move-
ment is not a completely predictable consequence of the explicit parameters, but is the
sum of small, randomly-directed displacements. As long as motion is passive, the net
result is a slow, randomly-directed drift. But when active, directed motion is added to
the model, this drift becomes amplified into a directional migration that should not
occur except under special circumstances requiring additional assumptions.

The initial selection of neighboring elements for each potential Potts move, and
hence the direction of each potential move, is random. As long as acceptance/rejec-
tion of moves is not directionally biased, the resulting movement will also be direc-
tionally random. Bias comes from forces external to a cell: adhesive attractions from
neighbors, or resistance of neighbors to compression. A cell's own internal forces



(arising from Vi and Si) are non-directional. Thus an isolated cell experiencing no
external forces undergoes only unbiased drift. This nonetheless gradually accumulates
a noticeable translocation (Fig. 4(a)).

Furthermore, when two cells impose directional forces on one another, equal and
opposite forces should push or pull the cells in opposite directions (Newton's third
law). But each Potts move violates this rule. For example, in Fig. 1(b)-(c), an array
element is added to the right edge of cell 2, so this cell’s center of mass shifts slightly
to the right. That same array element is eliminated from the left edge of cell 1, so this
cell’s center of mass likewise shifts to the right. Thus the cells’ movements have a
component not arising from the forces between the cells. As long as movement is
passive, in the absence of an externally imposed directional bias, this will result in
directionally random drift, often unnoticeable in large aggregates. But when active
motion is introduced, it has large, unintended consequences.

Fig. 4. Translocation in the absence of force in the original CPM. (a) An isolated cell experi-
ences only internal, non-directional forces, but nonetheless drifts. The X indicates the location
of the cell center at t = 0, and the light gray background shows the cumulative trail of all array
elements the cell passes over during the run. (b) Imposition of a statistical bias on accep-
tance/rejection of moves causes active, persistent directional motion, although the forces are
exactly the same as in (a). (c) An adhesive aggregate (ji = 50 for all cells) in which half of the
cells (those whose centers are marked with a black dot) are subjected to the same statistical bias
as the cell in (b); unmarked cells move non-directionally. The dashed box marks the original
position of the aggregate.

Active motion is the creation of a directional bias in cell motion, sometimes per-
sistent, by the cell's own control over its locomotion. In Fig. 4(b), a statistical bias has
been imposed on the acceptance/rejection of Potts moves, favoring acceptance of
moves toward the right. This results in distinct directional migration, although forces
driving this motion are not explicitly present in the model. Clearly this can only be
justified by assuming the presence of a substrate and of the cell's ability to crawl on
that substrate. In the absence of such a substrate, the cell should be unable to migrate.

Another feature of such migrating cells is that they drag non-migrating cells along
with them. In Fig. 4(c), the same statistical bias has been applied to half of the cells in



an adhesive aggregate. The active cells sort to the front of the aggregate and drag the
other cells along with them because of adhesion. Thus the whole aggregate migrates.
For living cells in the absence of a substrate this could not occur, since migrating cells
could only move forward by pushing other cells an equal distance backward – the
aggregate should sort, but remain stationary. Migration of the whole aggregate only
makes sense if the biased cells crawl on a substrate, pulling the unbiased cells.

This very method was used by Hogeweg and colleagues [8, 11] to model chemo-
tactic migration in cells of the slime mold Dictyostelium during several developmental
stages. This was valid for the earliest stage, when individual cells migrate through the
soil [11], because a substrate is present and the mechanics of crawling was not the
object of their study. But the model is no longer valid during migration of the Dic-
tyostelium “slug” [11], in which a mass of thousands of cells migrates as a unit, or
during the transformation from slug to fruiting body [8], because most of the cells in a
slug have no substrate except each other. In a model of active cell migration generated
by forces between a cell and its surroundings, cells should remain stationary in the
absence of such forces, and cells exerting forces on each other should obey Newton's
third law. Only then can the active migration be meaningful.

I now present two quite different approaches to solving these problems of locomo-
tion. Neither approach alone was able to provide a complete solution, but a hybrid
algorithm using both methods resulted in improved motion, requiring no assumed
substrate and able to accommodate active motion.

Method 1: Constraining Center of Mass. The cell volume and surface area of living
cells are properties that remain stable over time, but in the CPM, the inherent nature
of Potts moves is such that each accepted move changes these values. These values
are kept stable by constraining each one to its target value, Vi and Si, respectively.
Each is represented by its own term in equation 1, minimizing the difference between
the actual value and its target, so that the values change with each move, but remain
stable over time. The cell translocation problem can be viewed as an inappropriate
drift of a cell’s center of mass unrelated to the forces applied. Thus the center of mass
can be treated the same way as volume and surface area – as a quantity that should
remain stable over time even though each accepted move changes its value. By
constraining it to a target value, the drift can be eliminated.

This is implemented exactly like the other constraints, except that a cell’s center of
mass is a vector, (cxi(t), cyi(t)). With the simplifying assumption of constant density, a
cell’s mass is simply its volume, and the center of mass is the mean of the coordinates
of all the array elements in the cell. A target center of mass, (Cxi, Cyi), is defined for
each cell i, equal to the cell’s actual center at the time of initialization. In the absence
of external forces, this is kept constant. A constraint term is added to equation 1 to
minimize the distance between a cell’s actual center and its target center, Hcenter(t) =
(cxi(t) – Cxi)2 + (cyi(t) – Cyi)2. Thus an isolated cell can wiggle, but never drifts (Fig.
5(a)). This is true even when active motion is introduced by the imposition of a direc-
tional bias (Fig. 5(b)), as it should be, because there is no substrate which the cell can
adhere to and crawl on. Directional motion as seen in Fig. 4(b) will now require the
explicit definition of such a substrate and a crawling mechanism.

By itself, this center of mass constraint would prevent all cell displacement. In or-



der to allow displacement in response to forces from neighboring cells, the target cen-
ters must be explicitly updated. This is always done reciprocally, moving the target
centers of two cells in opposite directions. Subcomponents of ΔH are used to deter-
mine how far to move each cell, as follows. First, two cells are pushed apart whenever
the growing cell is pushed outward by its own volume and surface area constraints;
i.e., when the contribution of only the growing cell to (ΔHvolume + ΔHsurface area) is nega-
tive. The push occurs along the line between the two cells’ target centers.

Second, cells are pulled together whenever an accepted Potts move is favored by
adhesive changes. When an element of the shrinking cell is replaced by the growing
cell, contacts with third neighbors may be broken and reformed. Each such contact
exchange may be either favorable or unfavorable, depending on ji for each cell. When
the net energy change for all such contacts is favorable (negative), the growing cell
pulls those third neighbors with which favorable contacts were made. The growing
cell’s target center moves along the line from its center to the newly acquired array
element (i.e., toward the new adhesive contact points). The adhering cells’ target
centers move oppositely, and if there are two or more such adhering cells, the amount
of pulling force is distributed to each proportionally, according to the energy gain at
each contact and the amount of contact (number of edges) with each cell.

Fig. 5. Cells with constrained centers of mass. (a) An isolated cell as in Fig. 4(a). At t = 4000,
cell has not drifted. (b) An isolated cell with biased acceptance/rejection of moves, as in Fig.
4(b). At t = 4000, cell has not migrated. (c) Non-adhesive aggregate as in Fig. 3(b), t = 10,000.
Cells no longer disperse across open space, but nudge one another apart by their movements.

For both pulling and pushing interactions, the distance each target center is moved
is inversely proportional to the cell’s mass (i.e., its target volume). Thus the product
of mass and distance is equal and opposite for the two cells, as appropriate for objects
experiencing equal and opposite forces. The modified target center locations are taken
into account in calculating the distances of the cell centers from their targets after the
prospective Potts move, and thus contribute to the calculation of ΔH and the ultimate
acceptance or rejection of the move.

Under this algorithm, non-adhesive cells no longer disperse long distances, but
only as far as they can push one another (Fig. 5(c)). As they move apart, the contact
between them decreases, thus reducing the pushing forces between them. The state of
the cells thus approaches that of Fig. 5(a), in which movement is no longer possible
without some explicitly defined external force. In an aggregate of adhesive cells, all
equally adhesive, the adhesion overcomes these pushing forces and the aggregate
simply rounds up, just as in the original CPM – but with one important difference. In
the CPM, the aggregate center of mass (the mass-weighted average of the centers of
all the cells) drifts considerably. In the modified algorithm, the aggregate center hov-
ers near the aggregate target center, which itself remains stationary during the entire



duration of all runs, even while the individual target centers rearrange.
This algorithm unfortunately failed for heterogeneous aggregates – those contain-

ing cells of different adhesive strengths, or those in which directional bias was applied
to a subset of cells, such as in Fig. 4(c). Depending on the parameters used, cells
either were immobilized, or they became elongated and distorted as if subjected to
extreme forces. The failure is restricted to cell-cell interactions between the heteroge-
neous cell types, and only in the aggregate interior, away from the interface with the
environment. Many variant algorithms were attempted in order to diagnose and rem-
edy this failure, but no remedy was found. Fortunately, there is an entirely different
approach to the problem of drifting centers of mass and drifting aggregates, applicable
specifically to cell-cell interactions not involving the environment interface. This ap-
proach and the resulting successful hybrid algorithm are described in the next section.

Method 2: Redefining Potts Moves.  The basic Potts move produces deviations from
ideal behavior: the volume and surface area of a cell, as well as its center of mass, are
changed by each Potts move, even though in living cells, they are stable until
perturbed. These deviations, although directionally random, would accumulate over
time if not prevented. One approach to preventing them is to compensate for them by
constraining them to target values – Vi and Si [5, 9], and, in method 1 above, (Cxi,
Cyi). An alternative is to use a different type of fundamental individual move that
does not produce these deviations in the first place.

In the CPM, a Potts move selects two neighboring points in neighboring cells, and
copies one point over the other, causing one cell to acquire a new array element from
the other cell (a “Potts copy”). An alternative approach would be to swap the two
points instead, causing each cell to lose one array element and gain another (a “Potts
exchange”). In a Potts exchange, the movements of the two cells are exactly equal and
opposite. Thus the motion obeys Newton’s third law inherently, creating no deviation
for which to compensate. Even after adding the directional bias of active motion, all
cell movements will be balanced by opposite movements of other cells, so all motion
will be accounted for without having to invoke additional, undefined forces.

However, replacing all Potts copies with Potts exchanges would not be a viable,
complete alternative to method 1. A Potts exchange along the boundary between two
(non-environment) cells solves the problem of the two cells moving in the same di-
rection, but a Potts exchange along the boundary of a cell and the environment will
still suffer the problem of accumulating drift. Also, Potts exchanges are less flexible,
lending themselves to the sliding of cells past one another, but not to cells pulling
each other together across a gap, or pushing each other apart to create a gap (as in Fig.
5(c)). But, because method 1 handles these cases well, and because the cases for
which method 1 failed lie well within the category where Potts exchanges can do the
most good, a hybrid algorithm employing both methods was devised, as follows.

On each iteration, two neighboring points are selected at random. If either point is
in cell 0, then a Potts copy is carried out; otherwise an electronic coin flip determines
whether a Potts copy, or a Potts exchange, will be carried out. The Potts copies are as
described above, including the procedures of method 1 (constraint of cell centers of
mass to their targets, and update of the targets in response to external forces).

When a Potts exchange is to be carried out, the two initially selected points are



used only to identify the two neighboring cells in which they lie; a new pair of points
is then selected randomly from anywhere along the boundary between the two cells,
one on each side of the boundary. Thus the two points to be exchanged may be quite
distant from one another but are guaranteed to be adjacent to the boundary, one from
each cell. As usual, ΔH is then evaluated to determine acceptance/rejection. ΔH in-
cludes adhesion and the surface area constraint (taking into account that two different
array elements are being modified instead of just one); but no volume constraint,
because during an exchange of array elements the volume of each cell remains con-
stant (ΔHvolume = 0). Finally, in contrast to Potts copies, the movement of the cells’
centers of mass are automatically equal and opposite, and so need not be constrained.
If a Potts exchange is accepted, the target centers are simply moved the same distance
and direction as the actual centers, maintaining the relationship between center and
target.

Under this algorithm, isolated cells, and aggregates of non-adhesive or equally ad-
hesive cells, behave exactly as under method 1. In addition, heterogeneous aggregates
behave properly, not exhibiting the failures of method 1. Differentially adhesive cells
sort as in the original CPM, except that the aggregate center remains stationary. Fi-
nally, the addition of a directional bias to a subset of cells in an aggregate (Fig. 6)
results in a drastically different behavior from that of the original CPM. Now, since
all cell translocation, both during Potts copies and during Potts exchanges, must arise
from equal and opposite forces, the biased cells sort to one side of the aggregate by
pushing the non-biased cells to the other side. This algorithm therefore produces cor-
rect motion based on the interactions between the cells, without having to assume a
cryptic substrate, and even when active motion is added.

Fig. 6. Algorithm combining Potts copies (with centers of mass constrained) and Potts ex-
changes. Same parameters as in Fig. 4(c); directionally biased cells are marked, and dashed box
indicates original aggregate position. Active cells now advance by pushing the other cells
backward, leading to sorting without migration of the aggregate.

4  Conclusions and Future Prospects

I have presented a first step toward a “generic cellular Potts model”, the GCPM, a
mechanical cell model with generalized properties, exhibiting biologically realistic
behavior under a variety of conditions, depending on only those forces explicitly
described in the model. This model already produces a rich range of behavior based



on its inherent mechanics, without a genome, a metabolism, or a complex environ-
ment, the addition of which will surely add still greater richness.

Several additional enhancements are needed at the mechanical level. CPM cells
have boundaries, but no explicit membranes – distinct outer coverings with properties
independent from those of the interior. Membranes are the locus of all mechanical and
chemical cell-environment interaction, and are a critical component of cellular self-
maintenance, and so should be described explicitly. A version of the GCPM including
such an explicit description has been developed and will be presented elsewhere. The
model should of course be expanded to 3D, as has been done for the original CPM [6,
11]. An improved model of active motion is also necessary. The model now works
correctly for passive cell rearrangements and with directionally biased motion, but a
bias imposed numerically [8, 11] is an ad hoc description that treats the locomotion
mechanism as a black box; instead, it should be described in terms of forces between
the cell and its environment, just as the passive movements are. One feature that will
be required for such a description is heterogeneity of the cell surface. Cellular control
over the properties of different surface domains is not only a requirement for direc-
tional motion [14], but is a fundamental feature of numerous aspects of cell structure,
physiology, and behavior. These enhancements are currently under development.

The GCPM will provide a starting point for improved simulations of living cells
and tissues, as well as for richer adaptive simulations of cellular and multicellular
evolution. Realistic mechanical constraints on cells’ behaviors and capabilities, in an
evolutionary scenario, should provide both limits to, and opportunities for, the evolu-
tion of solutions to the problems of living in a mechanical world.
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